PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END REGULAR EXAMINATIONS, JAN - 2023
TRANSFORMATION TECHNIQUES \& PARTIAL DIFFERENTIATION (Common to EEE,ME,ECE,IT,CSE(IOTCSBT),AIDS,AIML Branches)
Time: 3 hours
Max. Marks: 70
Answer all the questions from each UNIT (5X14=70M)

Q.No.		Questions	Marks	CO	KL
UNIT-I					
1	a)	Fint ${ }^{\text {a }}$	[7M]	1	1
		Find the Fourier Series of $\mathrm{f}(\mathrm{x})=2 \quad 2 \quad$ in $0 \leq x \leq 2 \pi$.			
	b)	Find the Fourier Series of $\mathrm{f}(\mathrm{x})=e^{-x} e^{-x}$ in $-1 \leq \mathrm{x} \leq 1$.	[7M]	1	1
OR					
2.	a)	Find the Fourier Series of $\mathrm{f}(\mathrm{x})=\|x\|\|x\|$ in $-\pi \leq \mathrm{x} \leq \pi$ and hence deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+----=\frac{\pi^{2} 1}{81^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+----=\frac{\pi^{2}}{8}$	[7M]	1	1
	b)	Find the half range cosine series of $\mathrm{f}(\mathrm{x})=\mathrm{x}$ in $0<\mathrm{x}<1$.	[7M]	1	1
UNIT-II					
3.	a)	Using Fourier Integral, show that $e^{-x} \cos x=\frac{2}{\pi} \int_{0}^{\infty} \frac{\lambda^{2}+2}{\lambda^{4}+4} \cos \lambda x d \lambda$	[7M]	2	3
	b)	$\begin{aligned} & e^{-x} \cos x=\frac{2}{-} \int_{-}^{\infty} \frac{\lambda^{2}+2}{-} \cos \lambda x d \lambda \text { form of } \mathrm{f}(\mathrm{x}) \text {, then the complex Fourier } \\ & \text { transform of } f(x) \cos a x \text { is } \frac{1}{2}[F(p+a)+F(p-a)] \end{aligned}$	[7M]	2	3
$f(x) \cos a x$ is $\frac{1}{-}[F(p+a)+F(p-a)]$					
4.	a)	Express $f(x)=\left\{\begin{array}{c}1 \text { in } 0 \leq x \leq \pi \\ 0 \text { in } x>\pi\end{array}\right.$ f $\left.x\right)=\left\{\begin{array}{c}1 \text { in } 0 \leq x \leq \pi \\ 0 \text { in } x>\pi\end{array}\right.$ as a Fourier Sine Integral and hence evaluate $\int_{0}^{\infty} \frac{1-\operatorname{Cos}(\pi \lambda)}{\lambda} \operatorname{Sin}(\mathrm{x} \lambda) \mathrm{d} \lambda$.	[7M]	2	5
	b)	$\int_{0}^{\infty} \frac{1-\operatorname{Cos}(\pi \lambda)}{\lambda} \operatorname{Sin}(\mathrm{x} \lambda) \mathrm{d} \lambda$. Cosine Transforms of x .	[7M]	2	1
λ UNIT-III					
5.	a)	$\text { Prove that } z\left[n^{2}\right]=\frac{z^{2}+z}{(z-1)^{z}} z\left[n^{2}\right]=\frac{z^{2}+z}{(z-1)^{3}} .$	[7M]	3	5
	b)	Find the Z transform of $\cosh n \theta$.	[7M]	3	1
OR					
6.	a)	Using Convolution theorem, find $Z^{-1}\left[\frac{z^{3}}{Z(z-2)(z-3)}\right]$	[7M]	3	3
	b)	Solve the difference equation $u_{n+2}+4 u_{n+1}+3 u_{n}=3^{n}$ with $u_{0}=0, u_{1}=1$	[7M]	3	3
$u_{n+2}+4 u_{n+1}+3 u_{n}=3^{n} \text { with } u_{0}=0, u_{1}=1$					
7.	a)	$\text { Verify Euler's theorem for } u=x^{2} \tan ^{-1}\left(\frac{y}{x}\right)-y^{2} \tan ^{-1}\left(\frac{x}{y}\right)$	[7M]	4	3
	b)	$\begin{aligned} & u=x^{2} \tan ^{-1}\left(\frac{y}{x}\right)-y^{2} \tan ^{-1}\left(\frac{x}{y}\right) \quad \frac{\partial(x, y)}{\partial(r, \theta)}=1 . \\ & \text { If } \quad x=e^{r} . \operatorname{Sec} \theta ; y=e^{r} . \operatorname{Tan} \theta \quad \text { then prove that } \end{aligned}$	[7M]	4	5
OR					
8.	a)	Expand e^{xy} in the neighbourhood of (1, 1).	[7M]	4	2

	b)	Find the volume of the greatest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.	[7M]	4	1
UNIT-V					
9.	a)	Form the Partial Differential Equation by eliminating a and b from $z=\left(x^{2}+a\right)\left(y^{2}+b\right)$.	[7M]	5	3
	b)	Solve the $\mathrm{PDE} x^{2} p^{2}+y^{2} q^{2}=1 x^{2} p^{2}+y^{2} q^{2}=1$.	[7M]	5	3
OR					
10.	a)	Solve the partial differential equation $p x-q y=y^{2}-x^{2}$.	[7M]	5	3
	b)	Solve the partial differential equation $\left(D-D^{\prime}-1\right)\left(D-D^{\prime}-2\right) z=e^{2 x-y}$	[7M]	5	3
$\left(D-D^{\prime}-1\right)\left(D-D^{\prime}-2\right) z=e^{2 x-y}$ *****					

