HALL TICKET NUMBER

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS) II B.TECH I SEMESTER END REGULAR EXAMINATIONS, JAN - 2023 TRANSFORMATION TECHNIQUES & PARTIAL DIFFERENTIATION (Common to EEE,ME,ECE,IT,CSE(IOTCSBT),AIDS,AIML Branches)

Time: 3 hours

Max. Marks: 70

Answer all the questions from each UNIT (5X14=70M)

Q.No.		Questions	Marks	CO	KL				
UNIT-I									
1.	a)	Find the Fourier Series of $f(x) = \frac{(\pi - x)^2(\pi - x)^2}{2}$ in $0 \le x \le 2\pi$.	[7M]	1	1				
	b)	Find the Fourier Series of $f(x) = e^{-x}e^{-x}$ in $-1 \le x \le 1$.	[7M]	1	1				
OR									
2.	a)	Find the Fourier Series of $f(x) = x x $ in $-\pi \le x \le \pi$ and hence deduce that	[7M]	1	1				
		$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots - \dots = \frac{\pi^2 1}{8 1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots - \dots = \frac{\pi^2}{8}$							
	b)	Find the half range cosine series of $f(x) = x$ in $0 \le x \le 1$.	[7M]	1	1				
UNIT-II									
3.	a)	Using Fourier Integral, show that $e^{-x} \cos x = \frac{2}{\pi} \int_0^\infty \frac{\lambda^2 + 2}{\lambda^4 + 4} \cos \lambda x d\lambda$	[7M]	2	3				
	b)	$e^{-x}\cos x = \frac{2}{2}\int_{-\infty}^{\infty}\frac{\lambda^2+2}{\lambda^2}\cos\lambda x d\lambda$ form of f(x), then the complex Fourier	[7M]	2	3				
		transform of $f(x) \cos ax$ is $\frac{1}{2} [F(p+a) + F(p-a)]$							
$f(x)\cos ax \ is \ \frac{1}{2}[F(p+a) + F(p-a)]^{2}$									
4.	a)	$f(x) = \begin{cases} 1 \text{ in } 0 \le x \le \pi \\ 0 \text{ in } x > \pi \end{cases} f(x) = \begin{cases} 1 \text{ in } 0 \le x \le \pi \\ 0 \text{ in } x > \pi \end{cases} \text{ as a Fourier}$	[7M]	2	5				
		Since late and hence applying $\int_0^\infty \frac{1-\cos(\pi\lambda)}{\lambda} \sin(x\lambda) d\lambda$.							
	b)	$\int_{\infty}^{\infty} 1 - \cos(\pi \lambda) \sin(x \lambda) d\lambda$ Cosine Transforms of x.	[7M]	2	1				
$J_0 = \frac{1}{\lambda} SIII(x) u \lambda$									
5.	a)	Prove that $z[n^2] = \frac{z^2 + z}{(z-1)^2} z[n^2] = \frac{z^2 + z}{(z-1)^2}$	[7M]	3	5				
	b)	Find the Z transform of $\cosh n\theta$.	[7M]	3	1				
OR									
6.	a)	Using Convolution theorem , find $Z^{-1}\left[\frac{z^3}{Z(z-2)(z-3)}\right]$	[7M]	3	3				
	b)	Solve the difference equation $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ with $u_0 = 0, u_1 = 1$	[7M]	3	3				
$u_{n+2} + 4u_{n+1} + 3u_n = 3^n \text{ with } u_0 = 0, u_1 = 1_{V}$									
7.	a)	Verify Euler's theorem for $u = x^2 tan^{-1} \left(\frac{y}{x}\right) - y^2 tan^{-1} \left(\frac{x}{y}\right)$	[7M]	4	3				
	b)	$u = x^{2} tan^{-1} \left(\frac{y}{x}\right) - y^{2} tan^{-1} \left(\frac{x}{y}\right) \qquad \qquad \frac{\partial(x, y)}{\partial(x, y)} \cdot \frac{\partial(r, \theta)}{\partial(x, y)} = 1.$	[7M]	4	5				
		If $x=e$. Sec θ ; $y=e$. Ian θ then prove that $O(r,\theta) O(x,y)$							
UK VK $[7N4] 4 2$									
ð.	a)	Expand e ² in the heighbourhood of (1, 1).	[/IVI]	4	2				

			Ĺ						
	b)	Find the volume of the greatest rectangular parallelepiped that can be	[7M]	4	1				
		$x^2 + y^2 + z^2 - 1^{x^2} + y^2 + z^2 - 1$							
		inscribed in the ellipsoid $\overline{a^2} + \overline{b^2} + \overline{c^2} = 1 \overline{a^2} + \overline{b^2} + \overline{c^2} = 1$.							
UNIT-V									
9.	a)	Form the Partial Differential Equation by eliminating <i>a</i> and <i>b</i> from	[7M]	5	3				
		$z = (x^2 + a)(y^2 + b).$							
	1 \	$x^2 m^2 + x^2 \sigma^2 - 1 x^2 m^2 + x^2 \sigma^2 - 1$	[7]1]	5	2				
	b)	Solve the PDE $x^{-}p^{-} + y^{-}q^{-} = 1x^{-}p^{-} + y^{-}q^{-} = 1$.	[/1V1]	5	3				
OR									
10.	a)	Solve the partial differential equation $px - qy = y^2 - x^2$.	[7M]	5	3				
	b)	Solve the partial differential equation	[7M]	5	3				
		$(D - D' - 1)(D - D' - 2)z = e^{2x - y}.$							
L	I	$(D - D' - 1)(D - D' - 2)z = e^{2x - y}.$			l				
